

Trond Martin Augustson

VISION BASED IN-SITU CALIBRATION OF ROBOTS WITH APPLICATION IN SUBSEA INTERVENTIONS

M.Sc. Thesis

Thesis presented to obtain the M.Sc. title at the Mechanical Engineering Department at PUC-Rio.

Advisor: Marco Antonio Meggiolaro

Rio de Janeiro September 2007

Trond Martin Augustson

CALIBRAGEM VISUAL IN SITU DE MANIPULADORES ROBÓTICOS COM APLICAÇÃO EM INTERVENÇÕES SUBMARINAS

Dissertação apresentada como requisito parcial para obtenção do grau de Mestre pelo Programa de Pós-Graduação em Engenharia Mecânica do Departamento de Engenharia Mecânica do Centro Técnico Científico da PUC-Rio. Aprovada pela Comissão Examinadora abaixo assinada.

> Prof. Marco Antonio Meggiolaro Orientador Pontifícia Universidade Católica do Rio de Janeiro

> Prof. Mauro Speranza Neto Pontifícia Universidade Católica do Rio de Janeiro

> Prof. Raul Queiroz Feitosa Pontifícia Universidade Católica do Rio de Janeiro

> > Prof. Fernando Cesar Lizarralde Universidade Federal do Rio de Janeiro

> > > Prof. José Eugenio Leal Coordenador Setorial do Centro Técnico Científico – PUC-Rio

Rio de Janeiro, 3 de setembro de 2007

All rights reserved. Any reproduction of this work without authorization from the university, the author and the advisor is prohibited.

Trond Martin Augustson

Graduated in applied physics at The University of Bergen in 1998. He has worked with seismic surveying until entering the master program at PUC-Rio in 2005.

Ficha Catalográfica

Augustson, Trond Martin

Vision based in-situ calibration of robots with application in subsea interventions / Trond Martin Augustson ; orientador: Marco Antonio Meggiolaro. – 2007.

143 f. : il.(col.) ; 30 cm

Dissertação (Mestrado em Engenharia Mecânica)–Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, 2007. Inclui bibliografia

1. Engenharia mecânica – Teses. 2. Robotics. 3. Calibration. 4. Computer vision. 5. SIFT. 6. Patern recognition. 7. Automation. 8. Stereopsis. I. Meggiolaro, Marco Antonio. II. Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Engenharia Mecânica. III. Título.

CDD: 621

Thanks to

- My advisor Marco Antonio Meggiolaro, for help and support;
- Professor Raul Feitosa, for the contribution on computer vision;
- PUC-Rio for the opportunity and the great academic environment that constitute the basis of this work;
- CENPES/PETROBRAS for the support, including the submarine camera and information on the TA-40 manipulator;
- My family, however distant, supporting me during my work.

Abstract

Augustson, Trond Martin; Meggiolaro, Marco Antonio (Orientador). VISION BASED IN-SITU CALIBRATION OF ROBOTS WITH APPLICATION IN SUBSEA INTERVENTIONS. Rio de Janeiro 2007, 143p. M.Sc. Dissertation –Mechanical Engineering Department, Pontifícia Universidade Católica do Rio de Janeiro.

The majority of today's industrial robots are programmed to follow a predefined trajectory. This is sufficient when the robot is working in a fixed environment where all objects of interest are situated in a predetermined position relative to the robot base. However, if the robot's position is altered all the trajectories have to be reprogrammed for the robot to be able to perform its tasks. Another option is teleoperation, where a human operator conducts all the movements during the operation in master-slave architecture. Since any positioning errors can be visually compensated by the human operator, this configuration does not demand that the robot has a high absolute accuracy. However, the drawback is the low speed and low accuracy of the human operator scheme. The manipulator considered in this thesis is attached to a ROV (Remote Operating Vehicle) and is brought to its working environment by the ROV operator. Every time the robot is repositioned, it needs to estimate its position and orientation relative to the work environment. The ROV operates at great depths and there are few sensors which can operate at extreme depths. This is the incentive for the use of computer vision to estimate the relative position of the manipulator. Through cameras the differences between the actual and desired position of the manipulators is estimated. This information is sent to controllers to correct the pre-programmed trajectories. The manipulator movement commands are programmed off-line by a CAD system, without need even to turn on the robot, allowing for greatest speed on its validation, as well as problem solving. This work includes camera calibration and calibration of the structure of the manipulator. The increased accuracies achieved by these steps are merged to achieve in-situ calibration of the manipulator base.

Key Words

Robotics; Calibration; Computer vision; SIFT; Pattern recognition; Automation; Stereopsis

Resumo

Augustson, Trond Martin; Meggiolaro, Marco Antonio (Advisor). CALIBRAGEM VISUAL IN SITU DE MANIPULADORES ROBÓTICOS COM APLICAÇÃO EM INTERVENÇÕES SUBMARINAS. Rio de Janeiro 2007, 143p. Dissertação de Mestrado – Departamento de Engenharia Mecânica, Pontifícia Universidade Católica do Rio de Janeiro.

A maioria dos robôs industriais da atualidade são programados para seguir uma trajetória pré-definida. Isto é suficiente quando o robô está trabalhando em um ambiente imutável onde todos os objetos estão em uma posição conhecida em relação à base do manipulador. No entanto, se a posição da base do robô é alterada, todas as trajetórias precisam ser reprogramadas para que ele seja capaz de cumprir suas tarefas. Outra opção é a teleoperação, onde um operador humano conduz todos os movimento durante a operação em uma arquitetura mestre-escravo. Uma vez que qualquer erro de posicionamento pode ser visualmente compensado pelo operador humano, essa configuração não requer que o robô possua alta precisão absoluta. No entanto, a desvantagem deste enfoque é a baixa velocidade e precisão se comparado com um sistema totalmente automatizado. O manipulador considerado nesta dissertação está fixo em um ROV (Remote Operating Vehicle) e é trazido até seu ambiente de trabalho por um teleoperador. A cada vez que a base do manipulador é reposicionada, este precisa estimar sua posição e orientação relativa ao ambiente de trabalho. O ROV opera em grandes profundidades, e há poucos sensores que podem operar nestas condições adversas. Isto incentiva o uso de visão computacional para estimar a posição relativa do manipulador. A diferença entre a posição real e a desejada é estimada através do uso de câmeras submarinas. A informação é enviada aos controladores para corrigir as trajetórias préprogramadas. Os comandos de movimento do manipulador podem então ser programados off-line por um sistema de CAD, sem a necessidade de ligar o robô, permitindo rapidez na validação das trajetórias. Esse trabalho inclui a calibragem tanto da câmera quanto da estrutura do manipulador. As melhores precisões absolutas obtidas por essas metodologias são combinadas para obter calibração in-situ da base do manipulador.

Palavras-Chave

Robótica; Calibragem; Visão computacional; SIFT; Reconhecimento de padrões; Automação; Visão estéreo

Summary

1 Introduction	20
1.1. Motivation	20
1.2. Work objectives	20
1.3. Work description	21
1.4. Organization of the Thesis	24
2 Kinematic Modeling for Calibration of Manipulators	26
2.1. Introduction	26
2.2. Basic Concepts of Kinematics	28
2.3. The Denavit-Hartenberg Convention	29
2.4. Classic Manipulator Calibration	32
2.5. Elimination of Redundant Errors	36
2.6. Physical Interpretation of the Redundant Errors	38
2.7. Partial Measurement of End-Effector Pose	39
2.8. Inverse Kinematics	40
2.8.1. Solvability	40
2.9. Experimental Procedures	41
3 Computer Vision	47
3.1. Introduction	47
3.2. Mathematic Camera Models	48
3.2.1. The Pinhole Model	48
3.2.2. Intrinsic Parameters	49
3.2.3. Extrinsic Parameters	51
3.3. Camera Calibration	52
3.3.1. Radial Distortion	56
3.3.2. Sophisticated calibration	58
3.3.3. Coordinate extraction	61
3.3.4. Nonmaximum Suppression	61

3.3.5. K-means Line Fitting	63
3.4. Feature Matching	64
3.4.1. Detection of Interest Points	65
3.4.2. Elimination of Edge Responses	66
3.4.3. Accurate keypoint localization	67
3.4.4. Assigning Orientation	68
3.4.5. The Key-Point Descriptor	69
3.4.6. Invariance to orientation and illumination	70
3.4.7. Keypoint matching	71
3.5. Triangulation	73
3.6. Stereo Vision	76
3.7. Manipulator Base Calibration	78
3.7.1. Quaternion Algebra	79
3.7.2. Estimation of the Rotation Matrix Using Quaternions	80
3.8. Elimination of Keypoint Matches using RANSAC	83
3.9. Triangulation Using the Kinematics of the Manipulator	85
4 Application to the TA-40 Manipulator	90
4.1. Introduction	90
4.2. Description of the Manipulator	90
4.3. Kinematics of the TA-40	91
4.3.1. Joints 1 and 2	93
4.3.2. Joints 2 and 3	93
4.3.3. Joints 3 and 4	93
4.3.4. Joints 4 and 5	93
4.3.5. Joints 5 and 6	94
4.3.6. Joint 6	94
4.3.7. Denavit-Hartenberg Parameters	94
4.4. Calibration of the TA-40	95
4.5. Inverse Kinematics	96
4.6. Orientation Error of the Manipulator	101
5 Results	108
5.1. Introduction	108

5.2. Laboratory Experiments	108
5.2.1. Camera Calibration	110
5.2.2. Experiments with the X-Y Table	113
5.3. Calibration of an Underwater Camera	123
5.4. Position Estimation using the Underwater Camera	125
5.5. Camera Calibration performed Underwater	132
6 Conclusions and Suggestions	134
6.1. Conclusions	134
6.2. Suggestions for future work	135
7 References	136
Annoradiy	400
Appendix A	139

List of figures

Figure 1 - Repeatability and absolute accuracy	21
Figure 2 - Coordinate systems of the manipulator	27
Figure 3 - Denavit-Hartenberg parameters [5]	30
Figure 4 -Translation and rotation with effects of errors in the i-th	
link [6]	32
Figure 5 - Generalized errors for the i-th link. $\epsilon_{p,i},\;\epsilon_{s,i},\;\epsilon_{r,i}$ represent	
the rotation around the x,y and z-axes respectively. [6]	33
Figure 6 – Error compensation block diagram [6]	35
Figure 7 – Combination of translational linear errors [6]	38
Figure 8 – Simplified combination of error [6]	39
Figure 9 – Finding the rotation axis of joint 2 (Z_1), side view	42
Figure 10 – Finding the rotation axis of joint 1 (Z_0), upper view	42
Figure 11 - The trajectory of the probe forms a plane that is found	
by a least square approximation	43
Figure 12 - Angles between the laser tracker reference frame and	
the normal plane [12]	44
Figure 13 - Schematic representation of the pinhole model	48
Figure 14 – Geometry of the pinhole model [14]	49
Figure 15 - CCD layout. (a) shows an ideal square, (b) shows that	
the scale in x and y direction can differ, (c) shows that the axes	
might not be perpendicular [14].	49
Figure 16 - The modified pinhole model. [14]	50
Figure 17 - The image center is not always in the middle of the	
sensor since the lens normal does not intersect with the middle	
of the sensor panel	50
Figure 18 - Transformation of world coordinates to camera	
coordinates. [14]	52
Figure 19 – Calibration rig	53
Figure 20 - Transformation from world coordinates to picture	
coordinates. [14]	53

Figure 22 – Principle of barrel distortion. The black coordinates represent the image coordinates for a camera without
represent the image coordinates for a camera without
1 5
distortion. The violet coordinates show the distorted image
coordinates57
Figure 23 – The 4 directions used in nonmaximum suppression
Figure 24 – Output of the nonmaximum suppression algorithm
Figure 25 – Maxima and minima in the Difference-of-Gauss are
compared to its 26 neighbors [3]66
Figure 26 – Histogram of key-point orientation [3]69
Figure 27 - Keypoint calculation process. Each 4x4 element of
gradients (left) is referred to as a bin. For each bin a histogram
of 8 directions is calculated (right) [3]
Figure 28 – Distribution of relative keypoint orientation
Figure 29 – Triangulation
Figure 30 – Stereo Triangulation
Figure 31 –Initial procedure to estimate the position of the
reference camera relative to the keypoints. Creating a set of
3D coordinates, ¹ <i>p</i>
Figure 32 – Finding a second set of corresponding coordinates, ^{2}p
88
Figure 33 – TA40 and the miniature robot used as master
Figure 34 – TA-40 and coordinate systems [1]
The frame center Q_4 of joint 5 is located 747mm along the z_4 axis
from Ω_4 giving d ₄ =747. Since the frame centers position along
the common normal is zero. $a_4=0$. The z_4 axis is rotated -90°
the common normal is zero, $a_4=0$. The z_4 axis is rotated -90° relative to z_3 giving $\alpha_4=-90^\circ$
relative to z_{3} , giving α_4 =-90°
the common normal is zero, $a_4=0$. The z_4 axis is rotated -90° relative to z_3 , giving $\alpha_4=-90^\circ$
the common normal is zero, $a_4=0$. The z_4 axis is rotated -90° relative to z_3 , giving $\alpha_4=-90^\circ$
the common normal is zero, $a_4=0$. The z_4 axis is rotated -90° relative to z_3 , giving $\alpha_4=-90^\circ$
the common normal is zero, $a_4=0$. The z_4 axis is rotated -90° relative to z_3 , giving $\alpha_4=-90^\circ$

Figure 40 – x-y table in the Robotics laboratory at PUC 109
Figure 41 – Calibration rig 109
Figure 42 – Edges of the calibration rig. The estimated corners are
marked in red 110
Figure 43 – Figure showing the edges of the image in white. The
image to the left shows the initial k-mean line parameters. The
image on the right shows the improved estimate after only
three iterations. The estimated coordinate of the corner is
marked in red. The yellow and green lines show the estimated
lines
Figure 44 – Relative movement between extracted coordinates and
the projected coordinates 113
Figure 45 - The robot used as reference object in the experiment 114
Figure 46 – Coordinate system of the x-y table 114
Figure 47 – Method to estimate the set of coordinates, ${}^{2}p$. The
reference image is marked in yellow. The position of one of the
two cameras is to be estimated relative to the reference image 118
Figure 48 – Triangulation to estimate the coordinate set ^{1}p relative
to the origin. The reference image is marked in yellow. The
images closest to the reference image and the two cameras
used to estimate the coordinate set ${}^{2}p$ were not used
Figure 49 – RMS position error as a function of intraocular distance
using RANSAC and quaternion rotation estimation 120
Figure 50 – Graph showing the average RMS position error as a
function of the intraocular distance after the samples with the
worst error ratio had been removed 121
Figure 51 - RMS position error as a function of intraocular distance
using RANSAC with LMS rotation estimate
Figure 52 - RMS position error as a function of intraocular distance
using RANSAC with LMS rotation estimate and eliminating the
coordinates with a high error ratio 123
Figure 53 - The corrected image coordinates relative to their
respective extracted image coordinates 125

Figure 54 – Attachment support for the underwater camera	. 126
Figure 55 - Position accuracy as a function of the intraocular	
distance using all 72 coordinates and quaternion rotation	
estimation	. 128
Figure 56 - Position accuracy as a function of the intraocular	
distance after the coordinates with a large error ratio had been	
eliminated	. 129
Figure 57 - Position error as a function of intraocular distance with	
the underwater camera using all 72 coordinates and LMS	
rotation estimation	. 130
Figure 58 - Position accuracy as a function of the intraocular	
distance after the coordinates with a large error ratio had been	
eliminated	. 131
Figure 59 – Underwater calibration. The green points are the	
corrected image coordinates and the red lines show their	
respective image coordinates	. 133
Figure A.1 – Coordinate systems of the TA-40	. 139

List of Tables

Table 1 – Denavit-Hartenberg parameters	94
Table 2 – Errors from simulation 1	03
Table 3 – Camera calibration parameters	12
Table 4 – Position parameters for the experiment 1	15
Table 5 – Position error as a function of intraocular distance using	
RANSAC 1	19
Table 6 – Position error as a function of intraocular distance using	
RANSAC and error ratio elimination1	20
Table 7 - Position error as a function of intraocular distance using	
RANSAC together with the least mean square estimated	
rotation matrix 1	21
Table 8 - Position error as a function of intraocular distance using	
RANSAC together with the least mean square estimated	
rotation matrix and eliminating the coordinates with error ratio 1	22
Table 9 – Calibration parameters for the underwater camera in air,	
where s_u is the aspect ratio, f is the focal length, k_1 and k_2 are	
the radial distortion coefficients, T_1 and T_2 are the tangential	
distortion coefficients and (u_o, v_o) denotes coordinates of the	
image center 1	24
Table 10 – Position parameters for the experiment with the	
underwater camera1	27
Table 11 – Position error as a function of intraocular distance using	
the underwater camera, all 72 coordinates, and quaternion	
rotation estimation1	28
Table 12 - Position accuracy as a function of the intraocular	
distance after the coordinates with a large error ratio had been	
eliminated1	29
Table 13 – Position error as a function of intraocular distance using	
the underwater camera using all 72 coordinates and LMS	
rotation estimation1	30

Table 14 - Position accuracy as a function of the intraocular distance after the coordinates with a large error ratio had been eliminated.
131
Table 15 - Calibration parameters for the underwater camera in air, where s_u is the aspect ratio, *f* is the focal length, k₁ and k₂ are the radial distortion coefficients, T₁ and T₂ are the tangential distortion coefficients and (u_o, v_o) denotes coordinates of the image center.

List of Variables

A_q – Observation matrix used in quaternion rotation estimation

Ca-Observation matrix for plane estimation

 C_a – Observation matrix for arc coordinates projected onto the estimated plane

 C_t – Observation matrix for translated coordinates used to estimate circle parameters

 G_e – Non singular Identification matrix where the redundant errors have been eliminated.

 T_n^0 - homogeneous matrix 4x4 that describes the orientation and position of the manipulator end-effector relative to its base as a function of the angles of the links θ_n and the generalized errors $\boldsymbol{\varepsilon}$.

 a_i – Denavit-Hartenberg parameter: length of the common normal between two adjacent links

a – quaternion vector

 a_0, a_1, a_2, a_3 - quaternion vector components of a.

 a_p - parameter for an estimated 3D plane

 a_i - line parameter used to estimate a line through least square approximation

b - quaternion vector

 b_0, b_1, b_2, b_3 - quaternion vector components

bt - parameter used to estimate a circle from translated arc parameters

b_q - vector used in quaternion rotation estimation

 b_l - line parameter used to estimate a line through least square approximation

 b_p - parameter for an estimated 3D plane

 c_l - line parameter used to estimate a line through least square approximation

 c_p - parameter for an estimated 3D plane

 c_r – estimated radius of projected circle

d_{mnop} – variable used in deduction of triangulation principles

 d_p - parameter for an estimated 3D plane

- d_i Denavit-Hartenberg parameter: distance between the origin O_{i-1} and H_i
- dint Intraocular distance between two camera centers

 d_n – distance limit that denotes the maximum allowed distance from the nearest corresponding coordinate

- d_{ri} a coordinates' distance from the cluster center $\frac{1}{R}p$
- e_0 matrix containing the edge angle of an image
- i complex quaternion unit vector
- j complex quaternion unit vector
- k complex quaternion unit vector
- \mathbf{k} quaternion rotation axis given by $\mathbf{k} = [i j k]$
- n_p normal vector for estimated plane
- \hat{p} coordinate in the normalized in the normalized image plane
- ^{1}p 3D coordinate set relative to the origin
- ^{2}p 3D coordinate set corresponding to ^{1}p with a different reference frame
- ${}_{R}^{1}p$ translated coordinate set, used in RANSAC algorithm
- $\frac{1}{R}p$ estimated center of the translated coordinate set $\frac{1}{R}p$
- q quaternion vector
- q_0, q_1, q_2, q_3 quaternion vector components of q

 $r_{e,i}$ – error ratio of a coordinate, denoting its position error relative to its distance from the center of the cluster.

- $r_{\rm lim}$ error ratio limit, denoting the accepted error ratio $r_{e,i}$
- r_r estimated radius of projected circle
- \hat{u} normalized x-coordinate of an image relative to the image center
- \hat{v} normalized y-coordinate of an image relative to the image center
- u image x-coordinate corrected for radial distortion
- v image y-coordinate corrected for radial distortion
- u_t output vector from least square estimate of a circle
- v_p least square vector estimated by a lest square of C_a
- $\dot{x_a}$ x coordinate of an arc projected onto plane

- x_i coordinate of joint i in the Denavit-Hartenberg notation
- x_q substitution parameter used in quaternion deduction
- x_r estimated x-coordinate of circle center
- x_t translated x-coordinate used to estimate circle parameters
- x_{tri} coordinate defining a point used in triangulation
- y_a y-coordinate of an arc projected onto plane
- y_q substitution parameter used in quaternion deduction
- y_r estimated y-coordinate of circle center
- y_t translated x-coordinate used to estimate circle parameters
- y_{tri} -coordinate defining a point used in triangulation
- y_i coordinate of joint i in the Denavit-Hartenberg notation
- z_i coordinate of joint i in the Denavit-Hartenberg notation
- *z*_{tri}-coordinate defining a point used in triangulation
- C_a observation matrix of arc coordinates relative to the laser tracker
- C_a matrix containing the projected coordinates of C_a
- G matrix containing the edge magnitude of an image
- G_x matrix containing the edge magnitude in x direction of an image
- $G_{y^{-}}$ matrix containing the edge magnitude in y direction of an image
- S_x-Sobel filter mask for detecting edges in x direction
- S_y Sobel filter mask for detecting edges in y direction
- L_o observation matrix for camera calibration
- M projection matrix of the pin hole camera
- M_{ν} projection matrix in vector form
- $^{\rm c}O$ camera reference frame
- ^wO world reference frame
- ^{c}P coordinate relative to the camera reference frame
- ${}^{w}P$ coordinate relative to the world reference frame
- Q skew matrix used to calculate vector product
- R rotation matrix defining the relative rotation between two views

 ΔX - difference between desired position of the manipulator end-effector and the actual position.

 ΔX_t -matrix containing differences between desired position of the manipulator end-effector and the true measured position.

 J_t - The matrix $6m \ge 6(n+1)$ formed by *m* Identification Jacobians, called the Total Identification matrix

 α – magnification factor in x direction for the pin hole model [pixels]

 β – magnification factor in y direction for the pin hole model [pixels]

 α_i – Denavit-Hartenberg parameter: the angle between the joint axes in the right hand sense.

 $\hat{\boldsymbol{\epsilon}}$ - vector containing the estimated generalized errors

 ε - vector where the redundant errors are incorporated in the non redundant errors

- $\varepsilon_{x,i}$ Generalized error of joint *i* along *x*-axis
- $\varepsilon_{y,i}$ Generalized error of joint *i* along *y*-axis
- $\varepsilon_{z,i}$ Generalized error of joint *i* along *z*-axis

 $\varepsilon_{p,i}$ - Generalized rotational error of joint *i* around x-axis

 $\varepsilon_{s,i}$ - Generalized rotational error of joint *i* around *y*-axis

 $\varepsilon_{r,i}$ - Generalized rotational error of joint *i* around *z*-axis

 γ_1, γ_2 - multiplication factors that determines at what coordinate the closest mutual point is found for two lines in 3D

 θ_i – Denavit-Hartenberg parameter: the angle between the x_{i-1} axis and the common normal H_iO_i measured along the *z*-azis

 $\theta_{p,x}$ – estimated angle around the *x*-axis, between the normal plane and the reference frame.

 $\theta_{p,y}$ – estimated angle around the *y*-axis, between the normal plane and the reference frame.

 θ_q – quaternion rotation angle

 θ_{x_0} - camera bias angle around x-axis

 $\theta_{v_{n}}$ - camera bias angle around *y*-axis

 θ_{z_0} - camera bias angle around z-axis

 ζ – substitution variable used in estimation of quaternion rotation angle

 ρ – substitution variable used in estimation of quaternion rotation angle